
0018-9162/05/$20.00 © 2005 IEEE48 Computer

C O V E R F E A T U R E

P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

Intel Virtualization
Technology

V irtualizing a computing system’s physical
resources to achieve improved sharing and
utilization has been well established for
decades.1 Full virtualization of all system
resources−including processors, memory,

and I/O devices−makes it possible to run multiple
operating systems on a single physical platform.

In a nonvirtualized system, a single OS controls
all hardware platform resources. A virtualized sys-
tem includes a new layer of software, the virtual
machine monitor. The VMM’s principal role is to
arbitrate accesses to the underlying physical host
platform’s resources so that multiple operating sys-
tems (which are guests of the VMM) can share
them. The VMM presents to each guest OS a set of
virtual platform interfaces that constitute a virtual
machine (VM).

Once confined to specialized, proprietary, high-
end server and mainframe systems, virtualization is
now becoming more broadly available and is sup-
ported in off-the-shelf systems based on Intel archi-
tecture (IA) hardware. This development is due in
part to the steady performance improvements of
IA-based systems, which mitigates traditional vir-
tualization performance overheads. Other factors
include new creative software approaches that ad-
dress the difficulties inherent to IA virtualization2-4

and the emergence of novel applications for virtu-
alization in both industry and academia.

VIRTUALIZATION USAGE MODELS
Classic benefits of virtualization include improved

utilization, manageability, and reliability of main-

frame systems.5 Several users with differing OS
requirements can more easily share a virtualized
server, OS upgrades can be staged across VMs to
minimize downtime, and failures in guest software
can be isolated to the VMs in which they occur.

While these benefits have traditionally been con-
sidered valuable in high-end server systems, recent
academic research and emerging new VMM-based
products suggest that the benefits of virtualization
have wider appeal across a broad range of both
server and client systems. Figure 1 illustrates three
categories of functional capabilities that encompass
a broad range of virtualization usages.

Workload isolation
Virtualization can improve overall system secu-

rity and reliability by isolating multiple software
stacks in their own VMs. Security may be improved
because intrusions can be confined to the VM in
which they occur, while reliability can be enhanced
because software failures in one VM do not affect
the other VMs.

Thomas Bressoud and Fred Schneider examined
the application of virtualization techniques to
achieve system fault tolerance by running identical
copies of the same workload in two separate VMs
to recover from system failures.6 The Terra7 and
ReVirt8 projects are recent academic explorations
into the use of virtualization for improved security.
Principles of system-software isolation feature
prominently in Microsoft’s NGSCB (Next-
Generation Secure Computing Base)9 and in
VMware’s ACE (Assured Computing Environment).

Once confined to specialized server and mainframe systems, virtualization
is now supported in off-the-shelf systems based on Intel architecture
hardware. Intel Virtualization Technology provides hardware support
for processor virtualization, enabling simplifications of virtual machine
monitor software. Resulting VMMs can support a wider range of legacy
and future operating systems while maintaining high performance.

Rich Uhlig
Gil Neiger
Dion Rodgers
Amy L.
Santoni
Fernando
C.M. Martins
Andrew V.
Anderson
Steven M.
Bennett
Alain Kägi
Felix H.
Leung
Larry Smith
Intel Corporation

Workload consolidation
Corporate data centers are challenged by the

proliferation of large numbers of heterogeneous
and underutilized servers that run single-OS and
single-application workloads—for example, Web
hosting or file serving. Virtualization makes it pos-
sible to consolidate individual workloads onto a
single physical platform, reducing the total cost of
ownership.

Management of upgrades presents another con-
cern for information technology managers. When
new hardware or a new OS release becomes avail-
able, the challenges of supporting incompatible
legacy software often gate entire corporate
upgrades. Virtualization mitigates this problem by
allowing systems to run legacy and new operating
systems concurrently.

Embedding certain system-management functions
within a VM can improve client manageability. For
example, routing all network traffic through a man-
agement VM can provide network “circuit breaker”
capabilities that disconnect the client from a cor-
porate intranet if it appears to be infected by a virus.

Workload migration
By encapsulating a guest’s state within a VM,

virtualization makes it possible to decouple the
guest from the hardware on which it is currently
running and to migrate it to a different platform.

In addition to facilitating hardware maintenance
operations, VM migration can be triggered auto-
matically by workload balancing or failure-predic-
tion agents. This capability delivers improved
quality of service at a lower operational cost. Xen2

and the Internet Suspend-Resume Project10 have
demonstrated workload migration in both servers

and clients, and the technology forms the basis of
commercial products such as VMotion from
VMware.11

SOFTWARE-ONLY INTEL
ARCHITECTURE VIRTUALIZATION

Established and emerging applications motivate
strong support for virtualization in both server and
client computing systems. Unfortunately, the IA-32
and Itanium architectures impose many challenges
to providing such support. Software techniques
exist that address some of those challenges.

Challenges to virtualizing Intel architectures
Intel microprocessors provide protection based

on the concept of a 2-bit privilege level, using 0
for most-privileged software and 3 for the least-
privileged. The privilege level determines whether
privileged instructions, which control basic CPU
functionality, can execute without fault; it also con-
trols address-space accessibility based on the con-
figuration of the processor’s page tables and, for
IA-32, segment registers. Most IA software uses
only privilege levels 0 and 3, as Figure 2a illustrates.

For an OS to control the CPU, some of its com-
ponents must run with privilege level 0. Because a
VMM cannot allow a guest OS such control, a
guest OS cannot execute at privilege level 0. Thus,
IA-based VMMs must use ring deprivileging, a
technique that runs all guest software at a privilege
level greater than 0. A VM could deprivilege a guest
OS by running it either at privilege level 1 (the 0/1/3
model) or at privilege level 3 (the 0/3/3 model).
Figures 2b and 2c illustrate these choices. Although
the 0/1/3 model supports simpler VMMs, it cannot
be used on IA-32 processors for guests in 64-bit

May 2005 49

OS1

VMM

HW

OS2 OS1

VMM

HW

OS2OS1

HW1

OS2

HW2

OS

HW

App1App2 App2App1 App2App1App2App1

Workload migration

Workload isolation Workload consolidation

OS

VMM

HW1

App

HW2

VMM

OS

VMM

HW1

App

HW2

VMM

(a)

(c)

(b)

Figure 1.
Virtualization
capabilities.
VMM-based
products offer a
broad range of
virtualization
usages in three
categories: (a)
workload isolation,
(b) workload
consolidation,
and (c) workload
migration.

50 Computer

mode. The 64-bit mode is part of Intel’s EM64T
(Extended Memory 64 Technology), the 64-bit
extension to IA-32.

Ring deprivileging causes numerous virtualiza-
tion challenges.

Ring aliasing. Ring aliasing refers to problems that
arise when software is run at a privilege level other
than the level for which it was written. An example
in IA-32 is the PUSH instruction—which pushes its
operand on the stack—when executed with the CS
register (part of which is the current privilege level).
Similarly, the Itanium instruction br.call saves the
current privilege level into the ppl field in the PFS
register, which can be read at any privilege level. In
either case, a guest OS could easily determine that
it is not running at privilege level 0.

Address-space compression. Operating systems
expect to have access to the processor’s full virtual-
address space, known as the linear-address space
in IA-32. A VMM must reserve for itself some por-
tion of the guest’s virtual-address space. The VMM

could run entirely within the guest’s virtual-address
space, which allows it easy access to guest data,
although the VMM’s instructions and data struc-
tures might use a substantial amount of the guest’s
virtual-address space.

Alternatively, the VMM could run in a separate
address space, but even in that case the VMM must
use a minimal amount of the guest’s virtual-address
space for the control structures that manage tran-
sitions between guest software and the VMM. (For
IA-32, these structures include the IDT and the
GDT, which reside in the linear-address space. For
the Itanium architecture, the structures include the
IVT, which resides in the virtual-address space.)

The VMM must prevent guest access to those por-
tions of the guest’s virtual-address space that the
VMM is using. Otherwise, the VMM’s integrity
could be compromised if the guest can write to those
portions, or the guest could detect that it is running
in a virtual machine if it can read them. Guest
attempts to access these portions of the address space
must generate transitions to the VMM, which can
emulate or otherwise support them. The term
address-space compression refers to the challenges
of protecting these portions of the virtual-address
space and supporting guest accesses to them.

Nonfaulting access to privileged state. Privilege-based
protection prevents unprivileged software from
accessing certain components of CPU state. In most
cases, attempted accesses result in faults, allowing
a VMM to emulate the desired guest instruction.
However, the IA-32 and Itanium architectures both
include instructions that access privileged state and
do not fault when executed with insufficient priv-
ilege. For example, the IA-32 registers GDTR,
IDTR, LDTR, and TR contain pointers to data
structures that control CPU operation. Software
can execute the instructions that write to, or load,
these registers (LGDT, LIDT, LLDT, and LTR) only
at privilege level 0. However, software can execute
the instructions that read, or store, from these reg-
isters (SGDT, SIDT, SLDT, and STR) at any privi-
lege level. If the VMM maintains these registers
with unexpected values, a guest OS using the lat-
ter instructions could determine that it does not
have full control of the CPU.

Another example pertains to the Itanium page-
table address (PTA) register, which contains the
base address of the virtual hash page table (VHPT).
The instruction mov PTA is the normal way to
access this register, and software can execute it only
at privilege level 0. However, the thash instruction
indirectly exposes all or part of the VHPT base
address, and software can execute it at any privi-

3

2
1

0 VM monitor

3

2
1

0 VM monitor

(b)

(d)

Applications

Operating system

3

2
1

0

(a)

3

2
1

0

(c)

Guest operating system

Guest applications3

2
1

0

VM monitor

Guest operating system

Guest applications

Guest applications

Guest operating system

Figure 2. Virtualization methods. Intel microprocessors provide protection based
on the concept of a 2-bit privilege level, using 0 for most-privileged software
and 3 for least-privileged. The privilege level determines whether privileged
instructions, which control basic CPU functionality, can execute without fault.
(a) Nonvirtualized system with OS operating at level 0 and all software
applications running at level 3; (b) the 0/1/3 model for ring deprivileging; (c)
the 0/3/3 model for ring deprivileging; (d) system using VT-x or VT-i instead of
deprivileging to constrain guest software.

lege level. If the VMM maintains the VHPT at a
different address than the guest OS expects, a guest
OS using the thash instruction could determine that
it does not have full control of the CPU.

Adverse impacts on guest transitions. Ring deprivi-
leging can interfere with the effectiveness of facili-
ties in the IA-32 and Itanium architectures that
accelerate the delivery and handling of transitions to
OS software. The IA-32 SYSENTER and SYSEXIT
instructions support low-latency system calls.
SYSENTER always effects a transition to privilege
level 0, and SYSEXIT will fault if executed outside
that privilege level. Ring deprivileging thus has the
following implications:

• Executions of SYSENTER by a guest applica-
tion will cause a transition to the VMM and
not to the guest OS. The VMM must thus
emulate every guest execution of SYSENTER.

• Execution of SYSEXIT by a guest OS will cause
a fault to the VMM. Thus, the VMM must
emulate every guest execution of SYSEXIT.

The Itanium architecture supports efficient inter-
ruption handlers by providing them with informa-
tion about an interruption and the interrupted
context. This data is recorded, not in memory, but
in a set of interruption-control registers. The
processor protects system integrity by generating
faults in response to accesses to those registers out-
side privilege level 0. Typically, every interruption
handler reads these registers. If each such access
generates a fault to the VMM, the performance of
these handlers will be severely compromised.

Interrupt virtualization. Providing support for exter-
nal interrupts, especially regarding interrupt mask-
ing, presents some specific challenges to VMM
design. Both the IA-32 and Itanium architectures
provide mechanisms for masking external inter-
rupts, preventing their delivery when the OS is not
ready for them. IA-32 uses the interrupt flag (IF) in
the EFLAGS register to control interrupt masking;
the Itanium architecture uses the i bit in the PSR to
provide this function.

A VMM will likely manage external interrupts
and deny guest software the ability to control inter-
rupt masking. Existing protection mechanisms
allow such denial of control by ensuring that guest
attempts to control interrupt masking will fault in
the context of ring deprivileging. Such faulting can
cause problems because some operating systems fre-
quently mask and unmask interrupts. Intercepting
every guest attempt to do so could significantly
affect system performance.

May 2005 51

Intel Architecture Glossary
The IA-32 and Itanium architectures each include specific instruc-

tions, registers, and tables, some of which are listed below.

IA-32 terms
CPUID: CPU identification instruction
CR: control registers: CR0, CR3 (page-table base address, which con-
trols translation from linear to physical addresses), CR4, and CR8 (cur-
rent task priority)
CS: segment register for the current code segment; in some modes. its low
2 bits are the current privilege level
DR: debug register
EFLAGS: 32-bit version of the flags register; contains arithmetic flags as
well as the interrupt flag (IF), used to mask interrupts
GDT: global descriptor table; contains descriptors that can be loaded
into segment registers LDTR and TR
GDTR, IDTR, LDTR, TR: registers that reference the GDT, IDT, LDT,
and TSS
HLT: halt instruction
IDT: interrupt descriptor table; controls the delivery of exceptions and
interrupts to their software handlers
IF: bit in the EFLAGS register that controls interrupt masking
INVLPG: invalidate TLB entry instruction
LDT: local descriptor table; contains descriptors that can be loaded into
segment registers
LGDT, LIDT, LLDT, LTR: instructions that write to GDTR, IDTR,
and TR
MOV: move instruction; different versions allow read and write access
to the control registers and debug registers
MWAIT: monitor wait instruction
PUSH: push instruction; pushes its operand on the stack
RDMSR, WRMSR: instructions to read from and write to model-
specific registers
RDPMC: read performance-monitoring counters instruction
RDTSC: read time-stamp counter instruction
segment registers: registers that control translation from logical to lin-
ear addresses
SGDT, SIDT, SLDT, STR: instructions that read from GDTR, IDTR,
and TR
SYSENTER, SYSEXIT: fast system call and fast return from fast system
call instructions
TSS: task-state segment; among other things, the current TSS controls
the ability of software to access I/O ports

Itanium terms
br.call: branch instruction used to effect a conditional procedure call
i: bit in the PSR that controls interrupt masking
IVT: interrupt vector table; controls delivery of exceptions and inter-
rupts to their software handlers
mov: move instruction; different versions allow read and write access to
the control registers (including PTA)
PFS: previous function state register
ppl: previous privilege level field in the PFS register
PAL: processor abstraction layer; provides a consistent firmware inter-
face to processor implementation-specific features
PSR: processor status register
PTA: page table address register
rfi: return from interruption instruction
thash: translation hashed entry address instruction
VHPT: virtual hash page table; controls translation from virtual
to physical addresses

52 Computer

Even if it were possible to prevent guest
modifications of interrupt masking without
intercepting each attempt, challenges would
remain when a VMM has a “virtual inter-
rupt” to deliver to a guest. A virtual interrupt
should be delivered only when the guest has
unmasked interrupts. To deliver virtual inter-
rupts in a timely way, a VMM should inter-
cept some, but not all, attempts by a guest to
modify interrupt masking. Doing so could
significantly complicate the design of a VMM.

Ring compression. Ring deprivileging uses
privilege-based mechanisms to protect the
VMM from guest software. IA-32 includes
two such mechanisms: segment limits and
paging. Because segment limits do not apply

in 64-bit mode, paging must be used in this mode.
Because IA-32 paging does not distinguish privilege
levels 0-2, the guest OS must run at privilege level
3. Thus, the guest OS will run at the same privilege
level as guest applications and will not be protected
from them. This problem is called ring compression.

Access to hidden state. Some components of IA-32
CPU state are not represented in any software-
accessible register. Examples include the hidden
descriptor caches for the segment registers. A seg-
ment-register load copies a referenced descriptor
(from the GDT or LDT) into this cache, which is
not modified if software later writes to the descrip-
tor tables. IA-32 does not provide mechanisms for
saving and restoring these hidden components of a
guest context when changing VMs or for preserv-
ing them while the VMM is running.

Addressing virtualization
challenges in software

To address the virtualization challenges that the
IA-32 and Itanium architecture present, VMM
designers have developed creative solutions that
modify guest software (source or binary). Denali12

and Xen2 are examples of VMMs that use source-
level modifications in a technique called paravirtu-
alization. Developers of these VMMs modify a
guest-OS kernel and its device drivers to create an
interface that is easier to virtualize.

Paravirtualization offers high performance and
does not require making changes to guest applica-
tions. A disadvantage of paravirtualization is that
it limits the range of supported operating systems.
For example, Xen cannot currently support an
operating system that its developers have not mod-
ified, such as Microsoft Windows.

A VMM can support legacy operating systems
by making modifications directly to guest-OS bina-

ries. VMMs that use such binary translation tech-
niques include those developed by VMware4 as well
as Virtual PC and Virtual Server from Microsoft.3
Such VMMs support a broader range of operating
systems, albeit with higher performance overheads,
than VMMs that use paravirtualization.2

A central design goal for Intel Virtualization
Technology is to eliminate the need for CPU par-
avirtualization and binary translation techniques
and thereby enable the implementation of VMMs
that can support a broad range of unmodified guest
operating systems while maintaining high levels of
performance.

INTEL VIRTUALIZATION TECHNOLOGY
Intel Virtualization Technology includes VT-x

support for IA-32 processor virtualization and VT-i
support for the Itanium architecture.13,14

VT-x architecture overview
VT-x augments IA-32 with two new forms of

CPU operation: VMX root operation and VMX
non-root operation. A VMM runs in VMX root
operation; it runs its guests in VMX non-root oper-
ation. Both forms of operation support all four
privilege levels, allowing a guest OS to run at its
intended privilege level and providing a VMM
with the flexibility to use multiple privilege levels.
VMX root operation is similar to IA-32 without
VT-x. Software running in VMX non-root opera-
tion is deprivileged in certain ways, regardless of
privilege level.

VT-x defines two new transitions: a transition
from VMX root operation to VMX non-root oper-
ation—that is, from VMM to guest—called a VM
entry, and a transition from VMX non-root oper-
ation to VMX root operation—that is, from guest
to VMM—called a VM exit.

The virtual-machine control structure (VMCS)
is a new data structure that manages VM entries
and VM exits and processor behavior in VMX non-
root operations. The VMCS is logically divided into
sections, two of which are the guest-state area and
the host-state area. These areas contain fields cor-
responding to different components of processor
state. VM entries load processor state from the
guest-state area. VM exits save processor state to
the guest-state area and then load processor state
from the host-state area.

Processor behavior changes substantially in
VMX non-root operation. Most importantly, many
instructions and events cause VM exits. Some
instructions cannot be executed in VMX non-root
operation because they cause VM exits uncondi-

A central design
goal for Intel
Virtualization
Technology is

to eliminate the
need for CPU

paravirtualization
and binary
translation
techniques.

tionally; these include CPUID, MOV from CR3,
RDMSR, and WRMSR. Other instructions, inter-
rupts, and exceptions can be configured to cause
VM exits conditionally, using VM-execution con-
trol fields in the VMCS.

VM-execution control fields. The VM-execution con-
trol fields allow a VMM the flexibility to specify
the instructions and events that cause VM exits.
There are separate controls for each of the fol-
lowing instructions: HLT, INVLPG, MOV CR8,
MOV DR, MWAIT, RDPMC, and RDTSC. These
controls support a variety of virtualization strate-
gies. Additional controls allow selective protection
of CR0, CR3, and CR4.

VT-x includes two controls that support inter-
rupt virtualization. When the external interrupt
exiting control is set, all external interrupts cause
VM exits; in addition, the guest cannot mask inter-
rupts. When the interrupt-window exiting control
is set, a VM exit occurs whenever guest software
indicates that it is ready to receive interrupts.

To support VMM flexibility, VT-x includes
bitmaps that allow a VMM selectivity regarding
some causes of VM exits. One of these is the excep-
tion bitmap, which contains 32 entries for the
IA-32 exceptions. It allows a VMM to specify
which exceptions should cause VM exits and which
should not. Another bitmap allows per-port con-
trol of I/O instructions.

VMCS details. The guest-state area contains the
state of the virtual CPU associated with the VMCS.
It includes fields corresponding to the IA-32 regis-
ters that manage processor operation, such as the
segment registers, CR3, and IDTR.

In addition, the guest-state area includes fields
corresponding to certain components of nonregis-
ter processor state—for example, the descriptor
caches for the segment registers. Inclusion of these
components allows the VMM to record their
values when a VM is not running and to restore
them when the VM is restarted.

A VMM references the VMCS with a physical—
not linear—address. This eliminates the need to
locate the VMCS in the guest’s linear-address space,
which can be different from the VMM’s linear-
address space.

VM entries and exits. VM entries load processor
state from the guest-state area of the VMCS. A
VMM can optionally configure VM entry to follow
this loading by injecting an interrupt or exception.
The CPU effects this injection using the guest IDT,
just as if the injected event had occurred immedi-
ately after VM entry. This feature removes the need
for a VMM to emulate delivery of these events.

VM exits save processor state into the guest-
state area and load processor state from the
host-state area. All VM exits use a common
entry point to the VMM. To simplify the design
of a VMM, every VM exit saves into the
VMCS detailed information specifying the rea-
son for the exit; many exits also record an exit
qualification, which provides further details.

For example, if the MOV CR instruction
causes a VM exit, the exit reason would indi-
cate “control-register access”; the exit qual-
ification would indicate (1) the identity of the
control register (for example, CR0); (2) whether
the MOV was to or from the control register; and
(3) which general-purpose register was the source
or destination of the instruction.

Both VM entries and VM exits load CR3 (the
base address of the page-table hierarchy). This
implies that the VMM and the guest can run in dif-
ferent linear-address spaces.

VT-i architecture overview
VT-i consists of extensions to the Itanium proces-

sor hardware and the processor abstraction layer
(PAL) firmware.

Processor status bit PSR.vm. The principal hard-
ware extension is the addition of a new bit (vm)
in the processor-status register (PSR). A VMM
runs with PSR.vm = 0; it runs its guests with
PSR.vm = 1. All four privilege levels can be used
regardless of the value of PSR.vm; guest software
can run at its intended privilege level, and a VMM
has the flexibility to use multiple privilege levels.
When PSR.vm = 0, processor operation is similar
to operation without VT-i. When PSR.vm = 1, all
privileged instructions and some nonprivileged
instructions—for example, thash—cause a new
virtualization fault.

PSR.vm is cleared to 0 on all interruptions deliv-
ered through the IVT; thus, the VMM or PAL han-
dles all interruptions, even those belonging to guest
software. The VMM or PAL can set PSR.vm to 1
by using the rfi instruction to return to guest soft-
ware. VT-i adds a new instruction, vmsw (virtual
machine switch), which modifies the PSR.vm bit
with minimum overhead, reducing the latency of
transitions between guest software and a VMM in
cooperative virtualization environments.

PSR.vm also controls the number of virtual-
address bits available to software. When a VMM
is running—that is, PSR.vm = 0—all implemented
virtual address bits are available. When a guest is
running—that is, PSR.vm = 1—the uppermost
implemented virtual-address bit is not available,

May 2005 53

VT-x includes
VM execution

control fields that
support a variety
of virtualization

strategies for IA-32.

54 Computer

and an exception occurs if this bit is used.
This reserves some dedicated address space
for the VMM that guest software cannot
access.

IVT vectors. To facilitate efficient handling
of transitions to a VMM, VT-i adds two new
vectors to the IVT. The VMM uses the vir-
tualization vector to configure the processor
to use two of the processor-banked registers
to identify the cause of the virtualization
fault and the faulting opcode. With the vir-
tual external interrupt vector, the VMM can
use a PAL service to register pending virtual
interrupts. If the VMM has registered an
interrupt and the guest performs an opera-
tion that would unmask it, control is trans-
ferred to the virtual external interrupt vector.

PAL firmware layer extensions. VT-i includes addi-
tions to the PAL firmware layer that provide a con-
sistent programming interface to a VMM even if
the hardware is not implemented identically across
processor generations. The PAL extensions include
a set of new procedures, the addition of PAL ser-
vices for high-frequency VMM operations, and a
virtual processor descriptor (VPD) table.

VT-i defines PAL procedures for setting up and
tearing down a virtual machine environment, ini-
tializing and terminating virtual processors, and
saving and restoring a virtual processor’s state.
These procedures follow the same calling conven-
tion as other PAL procedures.

VT-i introduces a PAL interface for virtualization
called a service. To reduce overhead, PAL services
use a new calling convention specifically targeted
for VMMs. PAL services provide several functions
including synchronizing guest shadow registers and
the VPD, saving and restoring a subset of a virtual
processor’s state, and resuming execution of guest
software after a transition to the VMM.

Both the PAL firmware and the VMM can access
the VPD, which is located in memory. The VPD
contains configuration settings for the virtual
processor and the subset of the virtual processor’s
state that influences its execution characteristics.
For example, the virtual processor’s control-regis-
ter values are located in the VPD. The VPD con-
tains two configuration fields that allow the VMM
to customize the virtualization environment:

• The virtualization-acceleration field optimizes
virtualization for particular resources and
instructions. For example, it allows optimiza-
tions that reduce the number of transitions a
VMM must handle when the guest is access-

ing the interruption-control registers in a fault
handler.

• The virtualization-disable field disables virtu-
alization of a particular resource or instruc-
tion. For example, the VMM could allow a
guest direct access to control registers dedi-
cated to external interrupts.

SOLVING VIRTUALIZATION
CHALLENGES WITH VT-X AND VT-I

VT-x and VT-i solve virtualization challenges in
part by allowing guest software to run at its
intended privilege level. Guest software is con-
strained, not by privilege level, but because—for
VT-x—it runs in VMX non-root operation or—for
VT-i—with PSR.vm = 1. Figure 2d illustrates this
usage.

Address-space compression
VT-x and VT-i provide two different techniques

for solving address-space compression problems.
With VT-x, every transition between guest software
and the VMM can change the linear-address space,
allowing the guest software full use of its own
address space. The VMX transitions are managed
by the VMCS, which resides in the physical-address
space, not the linear-address space.

With VT-i, the VMM has a virtual-address bit
that guest software cannot use. A VMM can con-
ceal hardware support for this bit by intercepting
guest calls to the PAL procedure that reports the
number of implemented virtual-address bits. As a
result, the guest will not expect to use this upper-
most bit, allowing the VMM exclusive use of half
of the virtual-address space.

Ring aliasing and ring compression
VT-x and VT-i eliminate ring-aliasing problems

because they allow a VMM to run guest software
at its intended privilege level. Instructions such as
PUSH (of CS) and br.call cannot reveal that soft-
ware is running in a virtual machine. VT-x also
eliminates ring compression problems that arise
when a guest OS executes at the same privilege level
as guest applications.

Nonfaulting access to privileged state
VT-x and VT-i avoid problems of nonfaulting

accesses to privileged state in two ways: by adding
support that causes such accesses to transition to a
VMM and by adding support that causes the state
accessed to become unimportant to a VMM.

A VMM based on VT-x does not require con-
trol of the guest privilege level, and the VMCS con-

VT-i includes
PAL firmware layer

additions that
provide a consistent

programming
interface to a VMM
even if the hardware
is not implemented
identically across

processor
generations.

trols the disposition of interrupts and exceptions.
Thus, it can allow its guest access to the GDT, IDT,
LDT, and TSS. VT-x allows guest software run-
ning at privilege level 0 to use the instructions
LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT,
and STR.

With VT-i, the thash instruction causes virtual-
ization faults, giving a VMM the opportunity to
conceal any modifications it may have made to the
VHPT base address.

Guest transitions
Guest software cannot use the IA-32 instructions

SYSENTER and SYSEXIT if the guest OS runs
outside privilege level 0. With VT-x, a guest OS
can run at privilege level 0, allowing use of these
instructions.

With VT-i, a VMM can use the virtualization-
acceleration field in the VPD to indicate that guest
software can read or write the interruption-control
registers without invoking the VMM on each
access. The VMM can establish the values of these
registers before any virtual interruption is delivered
and can revise them before the guest interruption
handler returns.

Interrupt virtualization
VT-x and VT-i both provide explicit support for

the virtualization of interrupt masking.
VT-x includes an external-interrupt exiting VM-

execution control. When this control is set to 1, a
VMM prevents guest control of interrupt masking
without gaining control on every guest attempt to
modify EFLAGS.IF. Similarly, VT-i includes a vir-
tualization-acceleration field that prevents guest
software from affecting interrupt masking and
avoids making transitions to the VMM on every
access to the PSR.i bit.

VT-x also includes an interrupt-window exiting
VM-execution control. When this control is set to
1, a VM exit occurs whenever guest software is
ready to receive interrupts. A VMM can set this
control when it has a virtual interrupt to deliver to
a guest. Similarly, VT-i includes a PAL service that
a VMM can use to register that it has a virtual inter-
rupt pending. When guest software is ready to
receive such an interrupt, the service transfers con-
trol to the VMM via the new virtual external inter-
rupt vector.

Access to hidden state
VT-x includes in the guest-state area of the

VMCS fields corresponding to CPU state not rep-
resented in any software-accessible register. The

processor loads values from these VMCS fields on
every VM entry and saves into them on every VM
exit. This provides the support necessary for pre-
serving this state while the VMM is running or
when changing VMs.

W hile virtualization technology was once
confined to proprietary server and main-
frame computing systems, established and

emerging applications in both server and client sys-
tems are moving it into the mainstream.

Despite the promise of new and existing virtual-
ization usages, many challenges stand in the way
of achieving efficient virtualization of today’s IA-
based systems. Creative software techniques such
as binary translation and paravirtualization have
addressed some of these problems, but the scope
of these challenges has meant that these solutions
are either highly complex—and potentially less
robust—or are incomplete in their ability to run
unmodified legacy operating systems.

VT-x and VT-i are the first components of Intel
Virtualization Technology, a series of processor and
chipset innovations soon to become available in
IA-based client and server platforms. VT-x and
VT-i offer solutions to the problems inherent
in IA-32 and Itanium processor virtualization,
enabling simpler, more robust, and more secure
VMM software to support a wider range of legacy
and future operating systems while maintaining
high levels of performance. !

Acknowledgments
The authors thank the following for their contri-

butions to the development of the VT-x and VT-i
architectures: Erik Cota-Robles, Gary Hammond,
Stalinselvaraj Jeyasingh, Mike Kozuch, Tariq
Masood, Dale Morris, Jonathan Ross, Rajesh
Sankaran, Sebastian Schönberg, and Chris Zou.

Intel and Itanium are trademarks or registered
trademarks of Intel Corporation or its subsidiaries
in the United States and other countries.

References
1. R.P. Goldberg, “Survey of Virtual Machine

Research,” Computer, June 1974, pp. 34-45.
2. P. Barham et al., “Xen and the Art of Virtualization,”

Proc. 19th ACM Symp. Operating Systems Princi-
ples, ACM Press, 2003, pp. 164-177.

3. Microsoft Corp., “Microsoft Virtual Server 2005
Technical Overview,” 2004; http://download.

May 2005 55

56 Computer

microsoft.com/download/5/5/3/55321426-cb43-
4672-9123-74ca3af6911d/VS2005TechWP.doc.

4. C.A. Waldspurger, “Memory Resource Management
in VMware ESX Server,” Proc. 5th Symp. Operating
Systems Design and Implementation, Usenix, 2002,
pp. 181-194.

5. R.J. Creasy, “The Origin of the VM/370 Time-Shar-
ing System,” IBM J. Research and Development,
Sept. 1981, pp. 483-490.

6. T.C. Bressoud and F.B. Schneider, “Hypervisor-Based
Fault Tolerance,” Proc. 15th ACM Symp. Operating
Systems Principles, ACM Press, 1995, pp. 1-11.

7. G.W. Dunlap et al., “ReVirt: Enabling Intrusion
Analysis through Virtual-Machine Logging and
Replay,” Proc. 5th Symp. Operating Systems Design
and Implementation, Usenix, 2002, pp. 211-224.

8. T. Garfinkel et al., “Terra: A Virtual Machine-Based
Platform for Trusted Computing,” Proc. 19th ACM
Symp. Operating Systems Principles, ACM Press,
2003, pp. 193-206.

9. P.B. England et al., “A Trusted Open Platform,”
Computer, July 2003, pp. 55-62.

10. M. Kozuch and M. Satyanarayanan, “Internet
Suspend/Resume,” Proc. 4th IEEE Workshop
Mobile Computing Systems and Applications, IEEE
Press, 2002, p. 40.

11. VMware Inc., “Building Virtual Infrastructure with
VMware VirtualCenter,” white paper V00014-
20001205, 2004; www.vmware.com/pdf/vi_wp.pdf.

12. A. Whitaker, M. Shaw, and S. Gribble, “Scale and
Performance in the Denali Isolation Kernel,” Proc.
5th Symp. Operating Systems Design and Imple-
mentation, Usenix, 2002, pp. 195-210.

13. Intel Corp., “Intel Virtualization Technology Speci-
fication for the IA-32 Architecture;” www.intel.com/
technology/vt/.

14. Intel Corp., “Intel Virtualization Technology Speci-
fication for the Intel Itanium Architecture;” www.
intel.com/technology/vt/.

Rich Uhlig is a senior principal engineer in Intel’s
Corporate Technology Group and leads various
aspects of Intel’s overall virtualization effort includ-
ing architecture definition, research prototyping,
performance analysis, and software usage. He
received a PhD in computer science and engineer-
ing from the University of Michigan.

Gil Neiger is a principal engineer in Intel’s Corpo-
rate Technology Group and leads development of
the VT-x architecture. He received a PhD in com-
puter science from Cornell University.

Dion Rodgers is a senior principal engineer in
Intel’s Digital Enterprise Group and is responsible
for bringing multiple advanced technology initia-
tives such as VT-x to the IA-32 product line. He
received an MS in computer engineering from
Clemson University.

Amy L. Santoni is a senior staff engineer in Intel’s
Digital Enterprise Group and is one of the princi-
pal architects of VT-i. She received a BS in com-
puter engineering from the University of Michigan.

Fernando C.M. Martins is a senior technology
strategist in Intel’s Digital Enterprise Group and
leads strategic planning for Intel Virtualization Tech-
nology. He received a PhD in electrical and com-
puter engineering from Carnegie Mellon University.
Contact him at fernando.martins@intel.com.

Andrew V. Anderson is a staff researcher in Intel’s
Corporate Technology Group and is working on
performance characterization and techniques for
efficient virtualization. He received an MS in elec-
trical and computer engineering from Brigham
Young University.

Steven M. Bennett is a senior staff researcher in
Intel’s Corporate Technology Group and is respon-
sible for development of technologies to support
virtualization. He received an MS in computer sci-
ence from the University of Wisconsin-Madison.

Alain Kägi is a researcher in Intel’s Corporate Tech-
nology Group and leads the development of
research virtual machine monitors. He received a
PhD in computer science from the University of
Wisconsin-Madison.

Felix H. Leung is a staff engineer in Intel’s Digital
Enterprise Group and has developed hardware and
PAL support for VT-i. He received a BS in com-
puter sciences from the University of Wisconsin-
Madison.

Larry Smith is a staff architect in Intel’s Digital
Enterprise Group and led the development and
implementation of VT-x. He received a BS in indus-
trial management from the Lawrence Institute of
Technology.

